
Deep Recurrent Conditional Random Field Network for Protein
Secondary Prediction

Alexander Rosenberg Johansen
Technical University of Denmark, DTU Compute

alexander@munk.ai

Casper Kaae Sønderby
University of Copenhagen, Bioinformatics Centre

casper.sonderby@bio.ku.dk

Søren Kaae Sønderby
University of Copenhagen, Bioinformatics Centre

soren.sonderby@bio.ku.dk

Ole Winther
Technical University of Denmark, DTU Compute

olwi@dtu.dk

ABSTRACT
Deep learning has become the state-of-the-art method for predict-
ing protein secondary structure from only its amino acid residues
and sequence pro�le. Building upon these results, we propose to
combine a bi-directional recurrent neural network (biRNN) with
a conditional random �eld (CRF), which we call the biRNN-CRF.
The biRNN-CRF may be seen as an improved alternative to an auto-
regressive uni-directional RNN where predictions are performed
sequentially conditioning on the prediction in the previous time-
step. The CRF is instead nearest neighbor-aware and models for the
joint distribution of the labels for all time-steps. We condition the
CRF on the output of biRNN, which learns a distributed represen-
tation based on the entire sequence. The biRNN-CRF is therefore
close to ideally suited for the secondary structure task because a
high degree of cross-talk between neighboring elements can be ex-
pected. We validate the model on several benchmark datasets. For
example, on CB513, a model with 1.7 million parameters, achieves a
Q8 accuracy of 69.4 for single model and 70.9 for ensemble, which
to our knowledge is state-of-the-art. 1

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
si�cation; Neural networks; Batch learning;

KEYWORDS
Secondary protein structure; Recurrent Neural Network; Condi-
tional Random Field

1 INTRODUCTION
Current approaches to predict secondary protein structures, from
amino acid residues and sequence pro�les, use machine learn-
ing methods [14, 24]. Recently, arti�cial neural network based

1Codebase available at: github.com/alrojo/biRNN-CRF

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ACM-BCB’17, August 20-23, 2017, Boston, MA, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4722-8/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3107411.3107489

methods [18] has emerged and received state of the art perfor-
mance [6, 19, 26, 29, 31]. These approaches have arisen as the chal-
lenge of annotating secondary protein structures is predictable from
conformations along the sequence of the amino acid and sequence
pro�les [29].

Recent methods propose using either; convolutions, which work
as �xed-sized sliding windows, combined with variants of auto-
regressive models [6, 31], convolutions with a conditional random
�eld (CRF) output layer [29], a bi-directional RNN [26] or convo-
lutions combined with a bi-directional RNN and multi-task learn-
ing [19].

Thus, previous work has had a tendency to either focus on in-
tegrating information over longer distances with a RNN or mod-
eling the sequence likelihood in secondary structures with auto-
regressive or CRF components. We propose to combine these meth-
ods in an end-to-end trainable arti�cial neural network. A method
that learns to model temporal information along the entire protein
structure, using a bi-directional recurrent neural network (biRNN),
as well as inferring the most likely sequence of proteins, using a
conditional random �eld (CRF). We argue that the biRNN part of the
model learns a hidden representation that integrates information
from formations along the sequence, and the CRF uses that repre-
sentation to model the joint distribution of the secondary structure
for all labels. Furthermore, by modeling the labels jointly rather
than independent conditioned on the hidden states of the biRNN
means that it will produce predictions closer to what is observed
in actual proteins. E.g. a prediction alpha-turn-alpha-turn will be
highly unlikely.

The recurrent neural network (RNN), as well as the convolu-
tional neural network (CNN), are modular architectures for spatial
feature extraction. Both these methods have proven the preferred
way for modelling sequences with deep learning methods [2, 11].
The RNN subjects the network to reuse its weights by recursively
applying them across a sequence, based on a prior that the input
domain will have a time dependency, e.g. along a series of words or
amino acids. Having only one set of parameters for every time-step
along the entire sequence lowers the parameter space signi�cantly,
as opposed to a standard feed forward network, which reduces
over�tting. As the RNN applies the same weights repeatedly a �xed
sequences length is not required. [11] Furthermore, modern RNNs
use gating mechanisms, such as the long-short term memory cell
(LSTM) [13] or the gated recurrent unit (GRU) [7, 9], to exhibit
an internal memory state. An internal memory state makes the
RNN capable of modeling dynamical temporal behavior over longer

sequences and enabling the neural network to express long-term
dependencies.

When predicting a sequence of labels the probability of a transi-
tion between labels may depend not only on the current observation,
but also on past and future observations. The Conditional Random
Field (CRF) [17] allow us to incorporate transitions between labels
by modeling the joint probability of the entire sequence. The CRF
uses a transition between neighboring states to achieve such. As
each label becomes dependent on the transition of its neighbors,
so will the neighbors become dependent on the transition of their
neighbors, creating a chain of dependencies that stretches the entire
sequence for each label (also known as the Markov assumption).

Despite the attractive qualities of neural network architectures,
building state-of-the-art neural networks is prohibitively expensive.
Luckily, current graphics processing units (GPUs), paired with op-
timized implementations of neural network architectures make it
convenient to train state-of-the-art neural networks. Furthermore,
easy-to-use libraries for wrapping GPU implementations, such as
the Python based TensorFlow [1] (our preferred choice) or Keras [8],
empowers researchers to quickly iterate and build state-of-the-art
neural networks with limited knowledge of GPUs.

The speci�c contribution of this paper are as follows: we present
how a recurrent neural network, with memory cells, and a condi-
tional random �eld can be successfully combined and trained on
secondary protein structure prediction given a sequence of amino
acids and sequence pro�les. Our results �nd that using a CRF im-
proves our baseline model and makes it comparable state-of-the-art
neural networks with much higher parameter count and complex-
ity.

2 RELATEDWORK
The use of deep learning for sequence analysis is not new. Since
the break-through of deep learning methods, which came from the
increase in available data and computational power [16], new and
previously underutilized deep learning methods [3, 4, 13, 23] have
achieved signi�cant improvements over state-of-the-art methods
within their respective sequential �eld. Such as Machine Trans-
lation [4, 30], Speech Recognition [2] and Audio Generation [28].
Tasks in computational biology that �ts well into these deep learn-
ing methods have experienced a spill-over, resulting in state-of-the-
art improvements as well [25]. More speci�cally, CRF is a method
originally tested on sequential labeling in natural language pro-
cessing for POS tagging [17], but has later been found useful to
the, mathematically, much similar problem of predicting secondary
protein structures [29]. In our work, we attempt to accomplish a
similar feat. As previous e�ort in secondary structure prediction has
yet to combine the representational power of RNNs with bene�ts
of modeling the joint probability of the entire sequence.

3 MATERIALS AND METHODS
This section describes the datasets used, evaluation metric and the
deep learning architecture.

3.1 Dataset
We use four di�erent dataset combinations: 1) the CB6133 with the
o�cial train, validation and test split, 2-4) the �ltered version of the

CB6133 as train and validation set and either the CB513, CASP10
or CASP11 as test set [20, 21, 31] 2.

3.1.1 CB6133. In the CB6133 (non-�ltered) dataset 3 we use
the amino acid residues (features [0 : 21)) and sequence pro�les
(features [35 : 56)) giving a total of 42 input features at each time
step. For labels, we use the secondary structure notation (features
[22 : 30)) at every time step and mask the loss using the NoSeq label
(feature [30]). We train and evaluate on the o�cial dataset splits
(training: [0 : 5600), validation: [5877 : 6133), test: [5605 : 5877)).

3.1.2 CB6133 filtered with CB513 & CASP10 & CASP11. For
training and validation, we use the �ltered-CB6133 dataset 4 with
the same features as the non-�ltered version. As no o�cial vali-
dation set is provided we optimized hyperparameters using 256
random samples from the training set. For testing we use CB513 5,
CASP10 and CASP11 6.

3.2 Evaluation
All models are evaluated using tagging accuracy reporting the fol-
lowing scores: 3-class accuracy (Q3; α-helix, β-strand and coil) and
8-class accuracy (Q8; α-helix={G for 310-helix, H for α ′-helix, I for
π -helix}; β-strand={E for β ′-strand, B for β-bridge} and coil={T for
β-turn, S for high-curvature-loop, L for irregular}) tagging accuracy.

3.3 Our Model
The architecture of the network is de�ned by three di�erent types
of learnable layers and one regularization layer, the fully connected,
the recurrent layer with gated recurrent unit (GRU) memory cells,
a conditional random �eld (CRF) layer and a Bernoulli dropout
regularization layer. Below, we describe the di�erent layer types
used for our network in more detail.

3.4 Fully Connected
The fully connected layer, also known as a dense layer or a multi
layer perceptron (MLP) [22], is a non-linear transformation of the
previous layer, ` − 1. The �rst layer, ` = 0, is considered the input
layer. In our case the input layer is sequence pro�les and a one-hot
encoding of the amino acid. The standard MLP is de�ned in the
following linear algebraic operation

z`t = h
`−1
t θ ` + b` , (1)

h`t = a(z`t) (2)

where hl is the current layer, θ ` is the weight matrix and b` is the
bias used to compute the linear combination of the input; z` . Notice
that we subscript t as this is performed individually for every state
at all time-steps. A non-linear activation function, a(z`) is applied
element-wise to the linear combination of the input, which results
in the next layer; h` .

Most commonly used functions for the element-wise activation
function a(z) includes the Logistic Sigmoid a(z) = 1/(1 + e−z) and
2http://www.princeton.edu/~jzthree/datasets/ICML2014/
3http://www.princeton.edu/~jzthree/datasets/ICML2014/cullpdb+pro�le_6133.npy.gz
4http://www.princeton.edu/~jzthree/datasets/ICML2014/cullpdb+pro�le_6133_�ltered.npy.gz
5http://www.princeton.edu/~jzthree/datasets/ICML2014/cb513+pro�le_split1.npy.gz
6Generously supplied by the authors of [29] and [19] and formatted identically to
CB6133/CB513

Figure 1: Our proposed model: The biRNN-CRF

the Hyperbolic Tangent a(z) = (ez−e−z)/(ez+e−z). Non-saturating
functions such as the Recti�er Linear Unit (ReLU) a(z) =max(0, z)
(our preferred choice) has become popular as their gradients do not
vanish and it is computationally easier, which makes optimizing
the network faster using stochastic gradient descent [10, 16].

As regularization technique, to avoid over�tting, we add Bernoulli
dropouts [27], which is a non-trainable layer. Such that

h` = h`−1 � p (3)

where pi ∈ [0, 1] is sampled from a Bernoulli distribution with
chance k for pi = 0 and 1 − k for pi = 1. Most commonly k = 0.5,

which is also the case in our Bernoulli dropout layer. The purpose
of the Bernoulli Dropout is to introduce noise such that the model
becomes less dependent on combinations of speci�c activations.

3.5 Bi-directional Recurrent Neural Network
A recurrent neural network (RNN) is a type of neural network
layer that repeatedly uses the same weights along a sequence of
data with a prior that the sequence dimension contains a useful
signal [11]. The gated recurrent unit (GRU), which we use, is a type
of computational unit for calculating the hidden representation at
every time step of the RNN. The GRU uses memory cells to better
model long-term dependencies and improve convergence speed.
The GRU is de�ned as described in Chung, 2014 [9].

r `t = σ (h`−1t W `
r + h

`
t−1U

`
r + b

`
r), (4)

z`t = σ (h`−1t W `
z + h

`
t−1U

`
z + b

`
z), (5)

ĥ`t = tanh(h`−1t W `
h + (r � h

`
t−1)U

`
h + b

`
h), (6)

h`t = (1 − z`t) � h`t−1z
`
t � ĥ`t (7)

Where σ (z) is the sigmoid function 1/(1 + e−z), h`−1t is the input
at time t and h`t−1 the hidden state at time t − 1. The RNN with
GRU is only de�ned in one direction, h`t for t = [1, 2, ...,T] where
T is sequence length. To utilize information from both directions
we compute the backwards RNN with ht for t = [T ,T − 1, ..., 1]
and h`t being dependent on h`t+1 instead of h`t−1. To combined both
directions, we concatenate the hidden states from the forward and
backward pass, such as described by [23], where the hidden states
are aligned with their index, t = [1, 2, ...,T], such that.

h`t =

−→
h`t←−
h`t

 (8)

where
−→
h`t is the forward pass and

←−
h`t the backwards pass. This is

known as the bi-directional RNN (biRNN).

3.6 Conditional Random Field (CRF)
The CRF is a joint distribution of the labels in the sequence y =
y1, . . . ,yT given the input sequence x = x1, . . . ,xT on the follow-
ing restricted form

p(y |x) = 1
Z (h)

T∏
t=1

expψyt (ht)
T−1∏
t=1

expϕyt ,yt+1 (ht ,ht+1) , (9)

where h = h1, . . . ,hT is the output of the previous hidden layer,
ψt = ψ (ht) is a linear model which takes ht as input and has the
number of classes C (C = 8 or C = 3 in this paper) outputs, ϕt =
ϕ(ht ,ht+1) is another linear model with C2 real-valued outputs

ψt =Wψht + bψ (10)

ϕt =Wϕ

[
ht
ht+1

]
+ bϕ (11)

and Z (h) is the normalization constant of the distribution. Due
to the chain structure, inference can be carried out exactly using
dynamic programming in O(TC2) [5]. During training where (x ,y)
is observed we need to compute Z (h) for each training sequence
as part of the likelihood p(y |x). During prediction where only x

Table 1: Q8 accuracy on: CullPDB, CB513, CASP10, CASP11.

Methods Q8(%)
CullPDB CB513 CASP10 CASP11

Single Model
GSN 72.1 66.4 N/A N/A
DCRNN N/A 69.4 N/A N/A
Deep Multi-Scale CNN N/A 70.0 N/A N/A
biRNN (ours)∗∗ µ=72.5, σ=0.15 µ=68.5, σ=0.12 µ=72.8, σ=0.23 µ=70.1, σ=0.32
biRNN-CRF (ours)∗∗ µ=73.4, σ=0.13 µ=69.4, σ=0.16 µ=73.5, σ=0.38 µ=70.8, σ=0.33
Ensemble
DeepCNF N/A∗ 68.3 71.8 72.3
DCRNN 73.2 69.7 76.9 73.1
Deep Multi-Scale CNN N/A 70.6 N/A N/A
biRNN-CRF (ours)∗∗∗ 74.6 70.8 74.7 72.2
biRNN-CRF (ours)∗∗∗∗ 74.8 70.9 74.9 72.4

Table 2: Q3 accuracy on: CullPDB, CB513, CASP10, CASP11.

Methods Q3(%)
CullPDB CB513 CASP10 CASP11

Single Model
biRNN (ours)∗∗ µ=83.6, σ=0.14 µ=81.8, σ=0.13 µ=84.1, σ=0.20 µ=81.3, σ=0.28
biRNN-CRF (ours)∗∗ µ=84.2, σ=0.13 µ=82.2, σ=0.16 µ=84.2, σ=0.29 µ=81.7, σ=0.25
Ensemble
DeepCNF N/A∗ 82.3 84.4 84.7
DCRNN N/A 84.0 87.8 85.3
biRNN-CRF (ours)∗∗∗ 85.0 83.2 85.0 83.2
biRNN-CRF (ours)∗∗∗∗ 85.0 83.3 85.2 82.8

is observed we can calculate either the most probably sequence
argmaxy p(y |x) (using the Viterbi decoding algorithm) or the mar-
ginal probabilities p(yt |x), t = 1, . . . ,T . In all our reported results,
we use the maximum marginal probability prediction since this
gives the smallest expected element-wise error [5]. Viterbi decoding
is relevant when the objective is the lowest possible sequence-wise
prediction error.

The most straight forward alternative to the CRF is an auto-
regressive model:

p(y |x) = p(y1 |x)
T∏
t=2

p(yt |y1, . . . ,yt−1,x) (12)

which can be implemented by replacing the CRF layer in �gure �g-
ure 1 with T independent C-dimensional softmax units and adding
yt−1 as an extra dimension to

−→
ht . The disadvantage of this model

compared to the CRF is two-fold: 1) computing the most proba-
ble sequences and marginals have exponential complexity in the
sequence length and 2) predictions are slow because we need to
recompute a large part of the model at each time step.

3.7 Architecture and details of learning
As depicted in �gure 1 the network contains �ve layers. The �rst
layer is a fully connected layer, the second is a bi-directional RNN
with GRU memory cells. The third layer is a dropout layer, the
fourth is a fully connected layer and the �fth is a conditional random

�eld layer that provides the conditional probability of the 8-way
classi�cation problem. Note that the input has a skip connection to
the bidirectional RNN. Both of the fully connected layers have 200
hidden units each and use ReLU as their activation function. Both
of the recurrent GRU layers have 400 hidden units each. To train
the model we minimize the loss which is the negative log likelihood
of the model parameters collectively denoted by θ over a training
set (X ,Y) of n paired input and output sequencesX = x (1), . . . ,x (n)

and Y = y(1), . . . ,y(n):

Lossθ (X,Y) = −
∑

(x,y)∈(X,Y)
log p(y|x,θ) . (13)

We train our model with the �rst order method: stochastic gradient
descent (SGD) with mini batches of size 64. SGD works by utilizing
chain ruling to take the partial derivative of the loss function with
respect to each weight vector in the network, and use the derivative
to update the weights. We use a version of SGD known as Adam [15]
with default parameters and a learning rate of 1e − 3. Adam uses
historic information to adapt the learning rate for every parameter
while training. To avoid exploding gradients [11] we normalize and
clip the gradients if its norm exceeds a threshold of 1. We train our
neural network on an Nvidia GeForce GTX Titan X GPU using the
python built TensorFlow library [1] to compile to CUDA (a GPU
interpretable language).

Table 3: Recall and precision of biRNN-CRF∗∗∗∗, DeepCNF ensemble and GSN on the CB6133 dataset. SS8 label corresponds to
the eight secondary protein structure labels as described in section 3.2

SS8 label Recall Precision
biRNN-CRF DCRNN GSN biRNN-CRF DCRNN GSN

L 0.672 0.662 0.633 0.606 0.589 0.541
B 0.099 0.049 0.001 0.614 0.596 0.500
E 0.853 0.862 0.823 0.803 0.792 0.748
G 0.343 0.311 0.133 0.530 0.434 0.496
I 0.000 0.000 0.000 0.000 0.000 0.000
H 0.936 0.927 0.935 0.878 0.878 0.828
S 0.288 0.275 0.159 0.537 0.518 0.423
T 0.604 0.572 0.506 0.589 0.577 0.548

Table 4: Recall and precision of biRNN-CRF∗∗∗∗ and DeepCNF ensemble on the CB513 dataset.

SS8 label Recall Precision
biRNN-CRF DeepCNF biRNN-CRF DeepCNF

L 0.657 0.657 0.597 0.571
B 0.042 0.026 0.515 0.433
E 0.835 0.833 0.760 0.748
G 0.348 0.260 0.456 0.490
I 0.000 0.000 0.000 0.000
H 0.931 0.904 0.847 0.849
S 0.265 0.255 0.549 0.487
T 0.554 0.528 0.557 0.53

4 EXPERIMENTS
We evaluate the Q3 and Q8 performance of our neural network
(biRNN-CRF) on the four datasets CB6133 train/val/test, CB6133
�ltered with either CB513, CASP10 or CASP11 as test set (elaborated
in section 3.1). The Q3 and Q8 accuracy is elaborated in section 3.2.

On the Q8 problem we further supply recall and precision for
the CB6133 and the CB6133 �ltered + CB513 dataset.

We compute the Q3 for our models by summing over our predic-
tions from the Q8 into their respective Q3 classes: helix (H), strand
(E) and coil (C).

The deep learning models we benchmark against are the GSN [31],
DeepCNF [29], DCRNN [19] and the Deep Multi-Scale CNN [6].

4.1 Training details
We train two di�erent type of models, the biRNN-CRF as illustrated
in �gure 1 and the biRNN, which is the exact same setup as the
biRNN-CRF, but using the sequence independent cross entropy
instead of the CRF layer and loss function.

We train 10 models for both the biRNN and biRNN-CRF to calcu-
late single model mean/standard deviation as well as ensembles. All
models are trained with the same setup, only seed for initializing
weights di�er. We use early stopping, based on the validation set,
to pick the optimal set of weights.

4.2 Results
In single model performance, the biRNN-CRF outperforms the base-
line biRNN using cross entropy across all datasets with between
0.1-0.9%, as shown in table 1 and table 2. In our benchmark against

state-of-the-art models using deep learning methods, our model
achieves a new state-of-the-art performances on the CB6133 Q8:
74.8%(+1.6%), CB513 Q8: 70.9%(+0.3%) and we also achieve 85.0%
on CB6133 Q3. Since we have not found any previously published
results using deep learning methods on the CB6133 Q3 dataset we
assume that it is also state-of-the-art. However, on the CASP10 and
CASP11 datasets the DCRNN model signi�cantly outperforms ours.

Furthermore, precision and recall for the CB6133 and CB513
is illustrated in table 3 and table 4. Here we �nd that our ensem-
ble model outperforms or equals most previously published deep
learning models.

4.3 Notes on models and ensemble
Not all previously published work we use for comparison has pro-
vided single model and ensemble results for all datasets. Because of
such, we either supply a N/A if one or more results are missing or
leave out the method from the table if all results are missing. ∗ The
DeepCNF article uses a di�erent test set than the o�cial for their
CB6133 results. ∗∗ Mean, µ, and standard deviation, σ , are based on
our 10 trained models as described in section 4.1. As there is not
a single adopted way of ensembling models within the secondary
protein structure literature, we employ our own ensembling strat-
egy. Our ensemble is based on averaging predictions from our 10
trained models used for ∗∗. For the ∗∗∗ ensemble, we sample the
weights from the best performing epoch, based on the validation
set. The ∗∗∗∗ ensemble is the same as ∗∗∗, but samples the top three
weights instead of top one to reduce variance in predictions from
each model.

5 DISCUSSION
Our results show that the bi-directional recurrent neural network
with a conditional random �eld (biRNN-CRF) can perform on pair
with vastly more advanced architectures. The biRNN model can
be seen as a Spartan version of the DCRNN [19] ,which makes
the DCRNN interesting for comparison. The biRNN has about a
quarter of the parameters of the DCRNN (1.7 million vs. >6 million),
no cascading convolutions, only one RNN layer and no multi-task
training. Increasing depth and network size has in recent literature
proven successful strategy [12], which might point to why our
baseline (biRNN) is trailing the DCRNN. However, as we add the
CRF layer we close the gap between the models. This result might
indicate that the temporal bene�ts of a recurrent neural network
with the conditioning power of a CRF is helpful when tackling
sequential problems in computational biology. Moreover, there is
no reason to conclude that the bene�ts obtained from the depth and
capacity of the DCRNN are mutually exclusive with the bene�ts
from the CRF layer. However, we will leave combining deep models
for secondary protein structure prediction with a CRF layer for
future research.

ACKNOWLEDGMENTS
This research was supported by the Novo Nordisk Foundation and
the NVIDIA Corporation with the donation of TITAN X and Tesla
K40 GPUs.

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A.

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S.
Moore, D. Gordon Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR
abs/1603.04467 (2016). https://arxiv.org/abs/1603.04467 Software available from
tensor�ow.org.

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen,
M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner,
T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R.
Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C.
Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu. 2015. Deep Speech 2: End-to-
End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).
http://arxiv.org/abs/1512.02595

[3] J. Ba, J. Kiros, and G. Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 (2016).

[4] D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR abs/1409.0473 (2014). https:
//arxiv.org/abs/1409.0473

[5] C. Bishop. 2006. Pattern recognition and machine learning. Springer.
[6] A. Busia, J. Collins, and N. Jaitly. 2016. Protein Secondary Structure Predic-

tion Using Deep Multi-scale Convolutional Neural Networks and Next-Step
Conditioning. CoRR abs/1611.01503 (2016). http://arxiv.org/abs/1611.01503

[7] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Ben-
gio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014).

[8] F. Chollet. 2015. Keras: Theano-based deep learning library. (2015). https:
//github.com/fchollet/keras

[9] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555
(2014). http://arxiv.org/abs/1412.3555

[10] X. Glorot, A. Bordes, and Y. Bengio. 2011. Deep Sparse Recti�er Neural Networks..
In Aistats, Vol. 15. 275.

[11] A. Graves. 2012. Supervised sequence labelling with recurrent neural networks.
Springer (2012).

[12] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for Image
Recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

[13] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural
Comput. 9, 8 (Nov. 1997), 1735–1780. DOI:http://dx.doi.org/10.1162/neco.1997.9.
8.1735

[14] D. Jones. 1999. Protein secondary structure prediction based on position-speci�c
scoring matrices. Journal of Molecular Biology 292, 2 (1999), 195 – 202. DOI:
http://dx.doi.org/10.1006/jmbi.1999.3091

[15] D. Kingma and J. Ba. 2015. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representation.

[16] A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classi�cation with
Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classi�cation-with-deep-convolutional-neural-networks.pdf

[17] J. La�erty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceed-
ings of the Eighteenth International Conference on Machine Learning (ICML
’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813

[18] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015),
436–444.

[19] Z. Li and Y. Yu. 2016. Protein Secondary Structure Prediction Using Cascaded
Convolutional and Recurrent Neural Networks. arXiv preprint arXiv:1604.07176
(2016).

[20] B. Monastyrskyy, A. Kryshtafovych, J. Moult, A. Tramontano, and K. Fidelis.
2014. Assessment of protein disorder region predictions in CASP10. Proteins:
Structure, Function, and Bioinformatics 82, S2 (2014), 127–137.

[21] J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano. 2014.
Critical assessment of methods of protein structure prediction (CASP)âĂŤround
x. Proteins: Structure, Function, and Bioinformatics 82, S2 (2014), 1–6.

[22] D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and B. Suter. 1990. The multilayer
perceptron as an approximation to a Bayes optimal discriminant function. Neural
Networks, IEEE Transactions on 1, 4 (1990), 296–298.

[23] M. Schuster and K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. Trans.
Sig. Proc. 45, 11 (Nov. 1997), 2673–2681. DOI:http://dx.doi.org/10.1109/78.650093

[24] M. Singh. 2005. Predicting protein secondary and supersecondary structure.
Handbook of Computational Molecular Biology, hapman & Hall CRC Computer
and Information Science Series (2005).

[25] S. Sønderby, C. Sønderby, H. Nielsen, and O. Winther. 2015. Convolutional LSTM
networks for subcellular localization of proteins. In International Conference on
Algorithms for Computational Biology. Springer, 68–80.

[26] S. Sønderby and O. Winther. 2014. Protein secondary structure prediction with
long short term memory networks. arXiv preprint arXiv:1412.7828 (2014).

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks from Over�tting. J. Mach.
Learn. Res. (2014). http://dl.acm.org/citation.cfm?id=2627435.2670313

[28] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. WaveNet: A Generative
Model for Raw Audio. CoRR abs/1609.03499 (2016). http://arxiv.org/abs/1609.
03499

[29] S. Wang, J. Peng, J. Ma, and J. Xu. 2016. Protein secondary structure prediction
using deep convolutional neural �elds. Scienti�c reports 6 (2016).

[30] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, and others. 2016. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation. arXiv
preprint arXiv:1609.08144 (2016). https://arxiv.org/abs/1609.08144

[31] J. Zhou and O. Troyanskaya. 2014. Deep Supervised and Convolutional Genera-
tive Stochastic Network for Protein Secondary Structure Prediction.. In ICML.
745–753.

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1512.02595
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1611.01503
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1006/jmbi.1999.3091
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=645530.655813
http://dx.doi.org/10.1109/78.650093
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.08144

	Abstract
	1 Introduction
	2 Related work
	3 Materials and Methods
	3.1 Dataset
	3.2 Evaluation
	3.3 Our Model
	3.4 Fully Connected
	3.5 Bi-directional Recurrent Neural Network
	3.6 Conditional Random Field (CRF)
	3.7 Architecture and details of learning

	4 Experiments
	4.1 Training details
	4.2 Results
	4.3 Notes on models and ensemble

	5 Discussion
	Acknowledgments
	References

